The presence of xenobiotic transporters in rat placenta.
نویسندگان
چکیده
Understanding the role of transporters in placental handling of xenobiotics across the maternal-fetal interface is essential to evaluate the pharmacological and toxicological potential of therapeutic agents, drugs of abuse, and other xenobiotics to which the mother is exposed during pregnancy. Therefore, the purpose of this study was to assess mRNA levels of various transporters in placenta and to compare these to levels in maternal liver and kidney, predominant organs of excretion, to determine which transporters are likely to have a role in xenobiotic transfer within the placenta. During late stage pregnancy, relative amounts of mRNA levels of 40 genes representing 11 families/group of transporters were assessed in placenta with respect to relative maternal liver and kidney mRNA levels. Members of the following transporter families were assessed: three multidrug resistance (Mdr), six multidrug resistance-associated protein (Mrp), eight organic anion-transporting polypeptide (Oatp), three organic anion transporters (Oat), five organic cation transporters (Oct), two bile acid transporters (Na(+)/taurocholate-cotransporting polypeptide and bile salt export protein), four metal (ZnT1, divalent metal transporter 1, Menkes and Wilsons), a prostaglandin, two peptide, two sterolin, and four nucleoside transporters. Of the 40 genes evaluated, 16 [Mdr1a and 1b, Mrp1 and 5, Oct3 and Octn1, Oatp3 and 12, four metal, a prostaglandin, AbcG8, equilibrative nucleoside transporter 1 (ENT1), and ENT2] were expressed in placenta at concentrations similar to or higher than in maternal liver and kidney. The abundance of these mRNA transcripts in placenta suggests a role for these transporters in placental transport of xenobiotics and supports their role in the transport of endogenous substances.
منابع مشابه
Minireview The Role of the Placenta in Fetal Exposure to Xenobiotics: Importance of Membrane Transporters and Human Models for Transfer Studies
The placenta is a key organ in fetal growth and development because it controls maternal-to-fetal exchanges of nutrients and hormones. It also interferes with drug delivery to the fetus by expressing active membrane transporters and xenobiotic metabolism enzymes. Developing strategies to understand the role of the placenta in drug delivery is a challenge in toxicology. Despite common physiologi...
متن کاملThe role of the placenta in fetal exposure to xenobiotics: importance of membrane transporters and human models for transfer studies.
The placenta is a key organ in fetal growth and development because it controls maternal-to-fetal exchanges of nutrients and hormones. It also interferes with drug delivery to the fetus by expressing active membrane transporters and xenobiotic metabolism enzymes. Developing strategies to understand the role of the placenta in drug delivery is a challenge in toxicology. Despite common physiologi...
متن کاملProminent expression of xenobiotic efflux transporters in mouse extraembryonic fetal membranes compared with placenta.
Fetal exposure to xenobiotics can be restricted by transporters at the interface between maternal and fetal circulation. Previous work identified transporters in the placenta; however, less is known about the presence of these transporters in the fetal membranes (i.e., yolk sac and amniotic membranes). The purpose of this study was to quantify mRNA and protein expression of xenobiotic transport...
متن کاملThe effects of fenvalerate on hepatic and cerebral xenobiotic metabolizing enzymes in selenium and/or iodine deficient rats
Objective(s): Particularly in developing countries, selenium and/or iodine deficiencies are encountered and use of pesticides in agriculture are not well-controlled. Fenvalerate is a pyrethroid insectide used in agriculture and has applications against a wide range of pests. This study was designed to evaluate the effects of fenvalerate on hepatic and cerebral xenobiotic metabolizing enzyme act...
متن کاملXenobiotic transporters: ascribing function from gene knockout and mutation studies.
Transporter-mediated absorption, secretion, and reabsorption of chemicals are increasingly recognized as important determinants in the biological activities of many xenobiotics. In recent years, the rapid progress in generating and characterizing mice with targeted deletion of transporters has greatly increased our knowledge of the functions of transporters in the pharmacokinetics/toxicokinetic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 31 2 شماره
صفحات -
تاریخ انتشار 2003